суббота, 11 июня 2016 г.

Методы получения когерентных источников света: а) деление амплитуды волны; б) деление волнового фронта


Френель (1818г) показал, что для получения когерентных волн можно использовать излучение одного и того же источника света. Необходимо испускаемое излучение разделить на два потока, распространяющихся по разным путям (возможно – в разных условиях), а затем свести их вместе. Тогда разность начальных фаз останется постоянной,  т.к. это волны от одного и того же источника. Необходимо только, чтобы разность времен была небольшой, чтобы фаза колебаний за это время не успела заметно измениться.

Можно делить поток излучения по-разному. Различают: а) деление фронта волны и б) деление амплитуды волны.
Деление фронта волны.

Примеры таких интерференционных схем: опыт Юнга, бипризма Френеля, бизеркала Френеля, билинза Бийе.
бизеркало Френеля
 

Основные характеристики интерференционных схем.

Рассмотрим на примере бипризмы Френеля (рис.3.).

1. В каждой интерференционной схеме свет от источника S делится на два пучка. Эти пучки определяют два вторичных источника
2. Интерференция наблюдается в области АВ, где перекрываются пучки лучей, идущих от источников , это поле интерференции. 3. Средняя освещенность поля интерференции зависит от телесного угла Ώ, в котором распространяются лучи каждого пучка.

4. Угол 2β, под которым расходятся два интерферирующих луча – апертура интерференции – важен, т.к. определяет допустимые размеры источника света.

5. В поле интерференции углу 2β соответствует угол схождения лучей 2u. Этот угол определяет ширину полосы интерференции σ. Ранее мы получили:.

Так как интерференционная картина имеет вид полос, перпендикулярных оси картинки (плоскости чертежа), то точечный источник S можно заменить узкой щелью. Вид картинки (по крайней мере, вблизи её центра) не изменится, а общая интенсивность станет больше. 

Деление амплитуды волны.

Интерференция в тонких пленках.

Рассмотрим отражение света от тонкой прозрачной пленки с показателем преломления материала n. Плоская волна падает на пленку под некоторым углом . Возникают два луча, отраженные от первой и второй поверхностей (рис.4). Разность хода лучей 1 и 2 равна Δ=n(ABC)-DC+λ/2. (прибавление половины длины волны возникает за счет отражения света от более плотной среды). Так как волновой фронт

в первой среде (воздухе) – AD, а в материале пленки – A1C, то время прохождения лучом 1 расстояния АА1 равно времени прохождения лучом 2 расстояния DC, поэтому

Δ=(A1 BC)n+λ/2=(A1 B1)n+λ/2=2dn cos r + λ/2

Таким образом, разность хода лучей 1 и 2 равна

Δ=2dn cos r + λ/2 (10) 

Соответственно, при Δ=mλ m=0,1,2,3,… наблюдается максимум интерференции, если же . Δ=(m+1/2), m=0,1,2,… – минимум. 

Локализация интерференционных полос. Полосы равного наклона и равной толщины.

Из формулы (10) видно, что разность хода зависит как от толщины пластинки, так и от угла наклона лучей.

Чтобы наблюдать интерференционные полосы, отраженные лучи с помощью линзы собирают на экране (линзой может служить и хрусталик глаза, тогда экраном служит сетчатка, и мы наблюдаем картинку визуально)




Поставим экран в фокальной плоскости линзы (рис 5). Тогда все

параллельные лучи соберутся в точку на экране, и каждой точке будет соответствовать свой угол падения лучей, а значит и своя разность хода. На экране мы увидим интерференционную картинку в виде колец. Это

полосы равного наклона. Они локализованы в бесконечности. Если наблюдать пластинку глазом и в белом свете, пластинка кажется окрашенной в определенный цвет – тот цвет, для которого при данном угле падения максимум. Так как хрусталик мал, мы наблюдаем только лучи под одним углом. Если же наблюдать пластинку под разными углами, она окажется окрашенной в разные цвета, в зависимости от угла.

Поставим экран так, чтобы на нем фокусировалась поверхность пластинки (Рис.6). Так как обычно источник света достаточно удален от пластинки, то для всех точек пластинки угол падения лучей примерно одинаков и разность хода зависит только от толщины пластинки в данном месте. Поэтому интерференционная картина зависит от изменений толщины пластины. Так, если это клин, о мы увидим полосы. Это полосы равной толщины.

В обоих случаях можно пользоваться протяженным источником и белым светом (однако только если пластинка достаточно тонкая).

Минимальная толщина пластинки. При d=0 разность хода равна половине длины волны, и это соответствует минимуму интенсивности. Пластинка кажется темной (поверхность мыльного пузыря перед тем, как пузырь лопнет, темнеет). Максимуму (первому) соответствует толщина 2dn=λ/2 откуда минимальная толщина пластинки (пленки) равна d=λ/(4n), пленка может быть даже тоньше длины волны.

Кольца Ньютона.

Линза лежит на плоской поверхности (рис.7). Между нижней поверхности линзы и поверхностью пластинки образуется воздушный зазор, интерферируют лучи, отраженные от этих поверхностей. Это частный случай полос равной толщины. Интерференционная картинка имеет вид колец. Рассчитаем разность хода лучей, отраженных от поверхности пластинки (плоской) и сферической поверхности положенной на нее линзы. Δ=2t+λ/2. Условия образования темных колец Δ=2t+λ/2=mλ+λ/2 (будем ориентироваться на темные, а не на светлые кольца, чтобы избежать неудобного слагаемого λ/2). Определяем толщину воздушного промежутка t между поверхностями


Здесь ρ – радиус темного кольца. Так как t<<R , то членом можно пренебречь, и тогда получим ., откуда


В центре – темное пятно.(За счет потери полуволны при отражении от очень тонкой прослойки. Или, если эта прослойка практически бесконечно тонкая- сравнима с межатомными расстояниями, то получается «оптический контакт» –отражения нет, так как нет границы между двумя поверхностями.

Если рассматривать картинку «на просвет» – темные и светлые кольца меняются местами.

Комментариев нет:

Отправить комментарий