Обобщая результаты своих многочисленных опытов, Фарадей пришел к количественному закону электромагнитной индукции:
Знак минусопределяется правилом Ленца: индукционный ток в контуре имеет всегда такое направление, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызвавшему этот индукционный ток.
Закон Фарадея может быть непосредственно получен из закона сохранения энергии, как это впервые сделал Г. Гельмгольц. Рассмотрим проводник с током I, который помещен в однородное магнитное поле, перпендикулярное плоскости контура, и может свободно перемещаться. Под действием силы Ампера F, направление которой показано на рисунке, проводник перемещается на отрезок dx. Таким образом, сила Ампера производит работу dA=IdФ, где dФ — пересеченный проводником магнитный поток.
Согласно закону сохранения энергии, работа источника тока за время dt () будет складываться из работы на джоулеву теплоту и работы по перемещению проводника в магнитном поле (IdФ):
где R — полное сопротивление контура. Тогда
где -dФ/dt=ξi есть не что иное, как закон Фарадея
Закон Фарадея можно сформулировать еще таким образом: э.д.с. электромагнитной индукции в контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную этим контуром. Этот закон является универсальным: э. д. с. не зависит от способа изменения магнитного потока. Э.д.с. электромагнитной индукции выражается в вольтах. Действительно, учитывая, что единицей магнитного потока является вебер (Вб), получим
Какова природа э.д.с. электромагнитной индукции? Если проводник движется в постоянном магнитном поле, то сила Лоренца, действующая на заряды внутри проводника, движущиеся вместе с проводником, будет направлена противоположно току, т. е. она будет создавать в проводнике индукционный ток противоположного направления (за направление электрического тока принимается движение положительных зарядов). Таким образом, возбуждение э.д.с. индукции при движения контура в постоянном магнитном поле объясняется действием силы Лоренца, возникающей при движении проводника.
Согласно закону Фарадея, возникновение э.д.с. электромагнитной индукции возможно и в случае неподвижного контура, находящегося в переменноммагнитном поле. Однако сила Лоренца на неподвижные заряды не действует, поэтому в данном случае ею нельзя объяснить возникновение э.д.с. индукции. Максвелл для объяснения э.д.с. индукции в неподвижных проводниках предположил, что всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в проводнике. Циркуляция вектора ЕB этого поля по любому неподвижному контуру L проводника представляет собой э. д. с. электромагнитной индукции:
Объяснение возникновения ЭДС индукции из электронной теории.
Пусть в магнитном поле с индукцией В перпендикулярно полю перемещается проводник длиной l со скоростью v, вектор v перпендикулярен вектору В (рис. 118). На свободные электроны в проводнике при перемещении его будет действовать сила Лоренца FЛ=evB,
где е – заряд электрона. Под действием этой силы FЛ произойдет перемещение зарядов и в проводнике возникнет разность потенциалов φ1– φ2, т.е. в самом проводнике возникает электрическое поле, которое будет препятствовать перемещению электронов под действием силы Лоренца. Сила, препятствующая перемещению, будет FЭ= еЕ, где Е =- напряженность поля в проводнике. В некоторый момент сила FЭ уравновешивается силой Лоренца FЛ
FЭ= -FЛ; еЕ = -еvB; E= -vB
или φ1– φ2= -vBl.
Если концы проводника замкнуть, то по нему потечет ток.
Движущийся в магнитном поле проводник можно рассматривать как своеобразный источник тока, обладающий ЭДС, называемой ЭДС индукции εi. Следовательно, на концах проводникадлинойl, движущегося со скоростьюvв магнитном поле с индукцией В, индуцируется ЭДС индукции
εi = -vBlsinα.
Если за время dtпроводник переместился на расстояниеdx, то его скорость будет
εi= .
ldx=dS – это площадь, пересекаемая проводником за времяdt.
Положив , получим
εi= ; εi
выражение закона Фарадея-Максвелла, для ЭДС индукции, исходя из электронных представлений
εi=
Комментариев нет:
Отправить комментарий