Совокупность оптических бесконтактных методов измерения высоких температур на основе зависимости между температурой и излучательной способностью (спектральной или интегральной) исследуемого тела называют оптической пирометрией. Приборы, используемые для этой цели, называютсяпирометрами излучения. В радиационных пирометрах регистрируется интегральное излучение исследуемого нагретого тела, а в оптических пирометрах− его излучение на одном или двух участках спектра.
В зависимости от того, какой закон теплового излучения АЧТ положен в основу при измерении температуры нагретых тел, различают три температуры − радиационную, цветовую и яркостную.
Радиационная температура Тр– это такая температура абсолютно черного тела, при которой его энергетическая светимость равна энергетической светимости исследуемого тела. Так как все реальные тела, температура которых измеряется, являются серыми и для них поглощательная способность А(T) < 1, то радиационная температура Тр тела, определяемая из закона Стефана-Больцмана, всегда меньше его истинной температуры тела Т, причем
. (16.26)
Цветовую температуру определяют на основании закона Вина, используя то свойство, что распределение энергии в спектре излучения серого тела такое же, как и в спектре абсолютно черного тела, имеющего ту же температуру. В этом случае излучающее серое тело имеет такой же цвет, как черное тело температуры Тц. Цветовая температура определяется по формуле
Тц = b/λmax (16.27)
и совпадает с истинной температурой тела. Таким способом определяется температура на поверхности Солнца и звезд. Сравнение спектра излучения Солнца и абсолютно черного тела показывает, что их отождествлять можно только довольно приблизительно. При таком приближении получили цветовую температуру Солнца примерно 6500 К.
Яркостная температура Тя – это температура абсолютно черного тела, при которой для определенной длины волны его спектральная плотность энергетической светимости равна спектральной плотности энергетической светимости исследуемого тела. Определение яркостной температуры основано на применении закона Кирхгофа к излучению исследуемого тела.
Для серого тела с известной поглощательной способностью A(λ0,T), соответствующей длине волны λ0, из закона Кирхгофа следует, что
A(λ0,T) · R(λ0,T) = R(λ0,TЯ), (16.28)
где T иTЯ− соответственно истинная и яркостная температуры тела:
. (16.30)
В качестве яркостного пирометра обычно используется пирометр с исчезающей нитью, принцип работы которого основывается на сравнении излучения нагретого тела в определенном спектральном интервале с длиной волны λ0 с излучением абсолютно черного тела с той же длиной волны. Накал нити пирометра подбирается таким образом, что ее изображение становится неразличимым на фоне поверхности нагретого тела, т.е. нить как бы «исчезает». В этом случае яркости излучения нити и нагретого тела для данной длины волны λ0 совпадают и, следовательно, совпадают их излучательные способности. Используя предварительно проградуированный по абсолютно черному телу миллиамперметр, измеряющий ток нити пирометра, можно определить яркостную температуру. Если исследуемый источник излучения также является черным телом, то найденная температура является его истинной температурой. В противном случае при известных значениях А(λ0,T) и λ0 можно определить истинную температуру исследуемого нагретого тела, используя формулу (16.30). .
Яркостные пирометры обеспечивают наибольшую точность измерений температуры в диапазоне (103− 104)K.
Комментариев нет:
Отправить комментарий